A Feature Selection Approach of Inconsistent Decision Systems in Rough Set
نویسندگان
چکیده
Feature selection has been widely discussed as an important preprocessing step in data mining applications since it reduces a model's complexity. In this paper, limitations of several representative reduction methods are analyzed firstly, and then by distinguishing consistent objects form inconsistent objects, decision inclusion degree and its probability distribution function as a new measure are presented for both inconsistent and consistent simplified decision systems. New definitions of distribution reduct and maximum distribution reduct for simplified decision systems are proposed. Many important propositions, properties, and conclusions for reduct are drawn. By using radix sorting and hash techniques, a heuristic distribution reduct algorithm for feature selection is constructed. Finally, compared with other feature selection algorithms on six UCI datasets, the proposed approach is effective and suitable for both consistent and inconsistent decision systems.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملApproaches to Knowledge Reduction of Decision Systems based on Conditional Rough Entropy
Knowledge reduction in rough set theory is an important feature selection method. Since it is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, to address this issue, by introducing rough entropy in information systems, the novel measures of conditional rough entropy with distinguishing consistent objects form inconsistent objects are p...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 9 شماره
صفحات -
تاریخ انتشار 2014